Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

Identifieur interne : 001757 ( Main/Exploration ); précédent : 001756; suivant : 001758

Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

Auteurs : Jing Wang [Suède] ; Nathaniel R. Street [Suède] ; Douglas G. Scofield [Suède] ; P R K. Ingvarsson [Suède]

Source :

RBID : pubmed:26721855

Descripteurs français

English descriptors

Abstract

A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.

DOI: 10.1534/genetics.115.183152
PubMed: 26721855
PubMed Central: PMC4788117


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.</title>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187</wicri:regionArea>
<wicri:noRegion>Umeå SE 90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE 90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE 90187</wicri:regionArea>
<wicri:noRegion>Umeå SE 90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scofield, Douglas G" sort="Scofield, Douglas G" uniqKey="Scofield D" first="Douglas G" last="Scofield">Douglas G. Scofield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala SE 75105, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE 75105, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala SE 75105, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE 75105</wicri:regionArea>
<wicri:noRegion>Uppsala SE 75105</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden par.ingvarsson@umu.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187</wicri:regionArea>
<wicri:noRegion>Umeå SE 90187</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26721855</idno>
<idno type="pmid">26721855</idno>
<idno type="doi">10.1534/genetics.115.183152</idno>
<idno type="pmc">PMC4788117</idno>
<idno type="wicri:Area/Main/Corpus">001978</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001978</idno>
<idno type="wicri:Area/Main/Curation">001978</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001978</idno>
<idno type="wicri:Area/Main/Exploration">001978</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.</title>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187</wicri:regionArea>
<wicri:noRegion>Umeå SE 90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE 90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE 90187</wicri:regionArea>
<wicri:noRegion>Umeå SE 90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scofield, Douglas G" sort="Scofield, Douglas G" uniqKey="Scofield D" first="Douglas G" last="Scofield">Douglas G. Scofield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala SE 75105, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE 75105, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala SE 75105, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE 75105</wicri:regionArea>
<wicri:noRegion>Uppsala SE 75105</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden par.ingvarsson@umu.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187</wicri:regionArea>
<wicri:noRegion>Umeå SE 90187</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Frequency (MeSH)</term>
<term>Genetic Fitness (MeSH)</term>
<term>Genetics, Population (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (genetics)</term>
<term>Recombination, Genetic (MeSH)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Aptitude génétique (MeSH)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Fréquence d'allèle (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Génétique des populations (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (génétique)</term>
<term>Recombinaison génétique (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Sélection génétique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Evolution, Molecular</term>
<term>Gene Frequency</term>
<term>Genetic Fitness</term>
<term>Genetics, Population</term>
<term>Genome, Plant</term>
<term>Genotype</term>
<term>Linkage Disequilibrium</term>
<term>Phylogeny</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Recombination, Genetic</term>
<term>Selection, Genetic</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Aptitude génétique</term>
<term>Déséquilibre de liaison</term>
<term>Fréquence d'allèle</term>
<term>Génome végétal</term>
<term>Génotype</term>
<term>Génétique des populations</term>
<term>Phylogenèse</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Recombinaison génétique</term>
<term>Substitution d'acide aminé</term>
<term>Sélection génétique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26721855</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>202</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.</ArticleTitle>
<Pagination>
<MedlinePgn>1185-200</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.115.183152</ELocationID>
<Abstract>
<AbstractText>A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.</AbstractText>
<CopyrightInformation>Copyright © 2016 by the Genetics Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-3793-3264</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Street</LastName>
<ForeName>Nathaniel R</ForeName>
<Initials>NR</Initials>
<Identifier Source="ORCID">0000-0001-6031-005X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE 90187, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scofield</LastName>
<ForeName>Douglas G</ForeName>
<Initials>DG</Initials>
<Identifier Source="ORCID">0000-0001-5235-6461</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala SE 75105, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE 75105, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
<Identifier Source="ORCID">0000-0001-9225-7521</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå SE 90187, Sweden par.ingvarsson@umu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005787" MajorTopicYN="N">Gene Frequency</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056084" MajorTopicYN="N">Genetic Fitness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="N">Genetics, Population</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="Y">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">natural selection</Keyword>
<Keyword MajorTopicYN="N">nucleotide polymorphism</Keyword>
<Keyword MajorTopicYN="N">recombination</Keyword>
<Keyword MajorTopicYN="N">whole-genome resequencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26721855</ArticleId>
<ArticleId IdType="pii">genetics.115.183152</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.115.183152</ArticleId>
<ArticleId IdType="pmc">PMC4788117</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genet Res. 1966 Dec;8(3):269-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5980116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Jul;29(7):1837-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 1975 Apr;7(2):256-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1145509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Jul;44(7):808-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2007 Oct;131(2):151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17160620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Dec;177(4):2251-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jul 23;523(7561):414-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26176917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e37558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17284312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19478-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2012;10(11):e1001422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23152720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Sep;91(9):1398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jan;16(1):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Apr 9;356(6369):519-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1560824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(8):e103645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25116432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Apr 23;304(5670):581-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Apr;14(4):262-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23478346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 28;475(7357):493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21753753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Nov 6;5(11):e310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2014;48:383-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25251853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomics. 2014 Jul;13(4):268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24759704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Apr;23(7):1764-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 May;20(5):665-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Mar;24(3):114-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Mar;19(3):336-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Mar;27(3):650-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19503600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Jan;6(1):e1000825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20107605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Feb 9;482(7384):173-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22318601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2014 Apr;31(4):1010-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24489114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Aug;134(4):1289-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8375663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 May 8;157(4):785-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24813606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Aug;27(8):1822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20299543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 Dec;4(12):981-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14631358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 May;28(5):1569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20952500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Oct;7(10):e1002326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Dec;177(4):2083-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Aug;27(8):1813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Aug;20(8):1103-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 May;23(10):2486-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2015 Apr;13(4):e1002112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25859758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 15;30(10):1486-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24458950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jul 23;523(7561):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26176923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(2):227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Sep;10(9):e1004622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25255320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Dec;17(12):1755-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 27;469(7331):529-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10051-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2014 Jan;29(1):51-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24139972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 20;437(7062):1149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):E864-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Feb;29(2):675-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21917724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Jul;3(7):e196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15907155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2014 Apr;30(4):133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24656563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Apr;17(4):520-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Jan;8(1):77-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Sep;26(9):2097-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jul;158(3):1227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Sep;15(9):1222-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014;15:356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25420514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Apr;22(8):2074-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23506466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1987 May;116(1):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3110004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22684630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(8):1638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Nov;208(3):830-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26079595</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
</noRegion>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<name sortKey="Scofield, Douglas G" sort="Scofield, Douglas G" uniqKey="Scofield D" first="Douglas G" last="Scofield">Douglas G. Scofield</name>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001757 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001757 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26721855
   |texte=   Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26721855" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020